Utile pour les exos : des exemples de rédactions concernant des droites tangentes (les droites tangentes demandées existent !)

<u>Un rappel</u>: Avec f dérivable en \mathbf{x}_0 la courbe C_f admet en son point $M_0 \begin{pmatrix} x_0 \\ f(x_0) \end{pmatrix}$ une droite tangente (T) de coefficient directeur $f'(x_0)$, dirigée par $\overrightarrow{u} \begin{pmatrix} 1 \\ f'(x_0) \end{pmatrix}$.

Une équation de cette droite tangente (T) est : $y = f'(x_0)[x - x_0] + f(x_0)$

la question posée	une rédaction possible en début de solution
écrire l'équation réduite d'une droite tangente	f étant dérivable en 3 , C_f admet en son point A d'abscisse 3 une droite tangente T_A dont une équation est :
à \mathbf{C}_f par exemple en son point A d'abscisse 3	$T_A: y = f'(x_0)[x - x_0] + f(x_0) \text{ avec } x_0 = 3 \text{ . Donc } T_A: y = f'(3)[x - 3] + f(3)$
	Etudier la position relative de la courbe C_f et de la droite (T) revient à comparer les ordonnées de deux points de
étudier la position relative de \mathbf{C}_f par rapport	même abscisse x ($x \in D_f$) : \to l'un , noté M , situé sur C_f et d'ordonnée : $y_M = f(x)$
$\mathbf{\hat{a}}$ la droite $\mathbf{(T)}$ avec par exemple $\mathbf{(T)}: \mathbf{y} = -4\mathbf{x} + 3$	\rightarrow l'autre , noté P , situé sur (T) et d'ordonnée : $y_p = -4x + 3$
	Avec x élément de $D_f: y_M - y_P = f(x) - (-4x + 3)$
\mathbf{C}_f possède-t-elle des <u>droites tangentes de</u> <u>coefficient directeur donné</u> par exemple égal à 2 ?	Avec f dérivable en x_0 la courbe C_f admet en son point d'abscisse x_0 une droite tangente (T) de coefficient
	directeur $f'(x_0)$. Par conséquent : C_f admet au moins une droite tangente de coefficient directeur 2 ssi on
	peut trouver au moins un réel x_0 tel que : f est dérivable en x_0 et $f'(x_0) = 2$
\mathbf{C}_f possède-t-elle des <u>droites tangentes parallèles</u> à l'axe (\mathbf{Ox}) ?	Une droite parallèle à l'axe (Ox) est une droite de coefficient directeur égal à 0 .
	D'autre part : avec f dérivable en x_0 la courbe C_f admet en son point d'abscisse x_0 une droite tangente (T)
	de coefficient directeur $f'(x_0)$.
	Par conséquent : C_f admet au moins une droite tangente parallèle à l'axe (Ox) ssi on peut trouver au moins
	un réel x_0 tel que : f est dérivable en x_0 et $f'(x_0) = 0$
\mathbf{C}_f possède-t-elle des <u>droites tangentes parallèles</u> à une droite Δ dont on connaît l'équation réduite ? par exemple : Δ : $y=-2x+1$	Avec l'équation réduite de Δ : $y=-2x+1$ on obtient Δ de coefficient directeur -2
	D'autre part : \rightarrow avec f dérivable en x_0 , la courbe C_f admet en son point d'abscisse x_0 une droite tangente
	(T) de coefficient directeur $f'(x_0)$.
	\rightarrow deux droites non parallèles à (Oy) sont parallèles ssi elles ont le même coefficient directeur .
	Par conséquent : C_f admet au moins une droite tangente parallèle à Δ ssi on peut trouver au moins un réel x_0
	tel que : \mathbf{f} est dérivable en x_0 et $f'(x_0) = -2$
\mathbf{C}_f possède-t-elle des <u>droites tangentes dirigées</u> <u>par un vecteur donné</u> ? par exemple par $\overrightarrow{v} \begin{pmatrix} 2 \\ -6 \end{pmatrix}$	Avec f dérivable en x_0 la courbe C_f admet en son point d'abscisse x_0 une droite tangente (T) dirigée par
	$\overrightarrow{u}\begin{pmatrix} 1\\ f'(x_0) \end{pmatrix}$. Le vecteur directeur de (T) qui a une première coordonnée égale à 2 est $2\overrightarrow{u}\begin{pmatrix} 2\\ 2f'(x_0) \end{pmatrix}$.
	Par conséquent : C_f admet au moins une droite tangente dirigée par \overrightarrow{v} $\begin{pmatrix} 2 \\ -6 \end{pmatrix}$ ssi on peut trouver au moins
	un réel x_0 tel que : \mathbf{f} est dérivable en x_0 et $\overrightarrow{v} = 2\overrightarrow{u}$ soit : $2f'(x_0) = -6$