Produit Scalaire en repère orthonormal

Le plan est muni d'un repère orthormal $(\mathbf{O}, \vec{\imath}, \vec{\jmath})$

1) calculer un produit scalaire de deux vecteurs, calculer le carré scalaire et la norme d'un vecteur

Avec
$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ on a : $\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'$ et $\overrightarrow{u} \cdot \overrightarrow{u} = (\overrightarrow{u})^2 = \|\overrightarrow{u}\|^2 = x^2 + y^2$

la norme d'un vecteur $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ est définie par $\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$

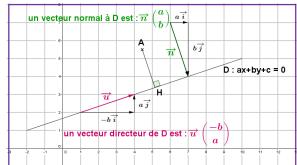
2) calculer la distance entre deux points de coordonnées connues

En ayant
$$A \begin{pmatrix} x_A \\ y_A \end{pmatrix}$$
 et $B \begin{pmatrix} x_B \\ y_B \end{pmatrix}$ on a $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ et $d(A, B) = AB = \left\| \overrightarrow{AB} \right\|$. D'où :
$$d(A, B) = AB = \left\| \overrightarrow{AB} \right\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$
 et
$$AB^2 = \left\| \overrightarrow{AB} \right\|^2 = (x_B - x_A)^2 + (y_B - y_A)^2$$

3) calculer la distance d'un point à une droite

vocabulaire : : \rightarrow Un vecteur normal à D est un vecteur orthogonal à tout vecteur directeur de D ou encore un vecteur dirigeant une droite perpendiculaire à D .

 \rightarrow La distance d(A, D) du point A à la droite D est égale à la longueur AH avec H projeté orthogonal de A sur D . **méthode :** pour déterminer les coordonnées de H il suffit de résoudre le système associé aux deux conditions suivantes



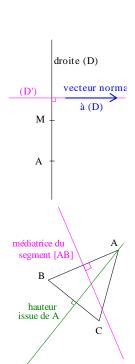
$$\left\{ \begin{matrix} H \in \mathcal{D} \\ \overrightarrow{AH} \perp \overrightarrow{u} \end{matrix} \right. \text{ soit : } \left\{ \begin{matrix} H \in \mathcal{D} \\ \overrightarrow{AH} \cdot \overrightarrow{u} = 0 \end{matrix} \right. \left. \begin{matrix} avec \ \overrightarrow{u} \end{matrix} \right. \text{ vecteur } \right.$$

Avec D: ax + by + c = 0

- \rightarrow un vecteur directeur de D est $\overrightarrow{u} \begin{pmatrix} -b \\ a \end{pmatrix}$
- \rightarrow un vecteur normal à D est $\overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix}$ ($\overrightarrow{n} \perp \overrightarrow{u}$)
- \rightarrow La distance de A à D se calcule avec

la formule :
$$d(A, D) = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}$$

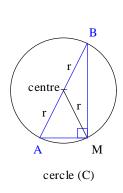
4) équations cartésiennes de droites définies comme perpendiculaires



Une droite (D) contenant un point A et ayant \overrightarrow{n} comme vecteur normal	$M\binom{x}{y}$ est un point de \mathcal{P} . Alors: $M \in (D) \Leftrightarrow \overrightarrow{AM} \perp \overrightarrow{n} \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0 \Leftrightarrow x_{\overrightarrow{AM}} x_{\overrightarrow{n}} + y_{\overrightarrow{AM}} y_{\overrightarrow{n}} = 0$
Une droite (D) perpendiculaire à une droite $(D'): \ \alpha x + \beta y + \gamma = 0$	Avec (D) perpendiculaire à (D') , tout vecteur directeur de (D') est normal à (D). Par théorème : un vecteur directeur de (D') : $\alpha x + \beta y + \gamma = 0$ est $\overrightarrow{u} \begin{pmatrix} -\beta \\ \alpha \end{pmatrix}$. $M \begin{pmatrix} x \\ y \end{pmatrix}$ est un point de \mathcal{P} . $M \in (D) \Leftrightarrow \overrightarrow{AM} \perp \overrightarrow{u} \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{u} = 0 \Leftrightarrow x_{\overrightarrow{AM}} x_{\overrightarrow{u}} + y_{\overrightarrow{AM}} y_{\overrightarrow{u}} = 0$
la hauteur h_A , issue du sommet A d'un triangle ABC	La hauteur h_A est la droite perpendiculaire à (BC) passant par A . $M\binom{x}{y} \text{ est un point de } \mathcal{P} \text{ . Alors :}$ $M \in h_A \Leftrightarrow \overrightarrow{AM} \perp \overrightarrow{BC} \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{BC} = 0 \Leftrightarrow x_{\overrightarrow{AM}} \ x_{\overrightarrow{BC}} + y_{\overrightarrow{AM}} \ y_{\overrightarrow{BC}} = 0$
la médiatrice Δ d'un segment $[AB]$	→ méthode 1 : La médiatrice du segment [AB] est l'ensemble des points M équidistants de A et B . $M\binom{x}{y}$ est un point de \mathcal{P} . $M \in \Delta \Leftrightarrow AM = BM \Leftrightarrow AM^2 = BM^2$ (AM et BM positifs) $M \in \Delta \Leftrightarrow (x - x_A)^2 + (y - y_A)^2 = (x - x_B)^2 + (y - y_B)^2$ → méthode 2 : La médiatrice du segment [AB] est la droite perpendiculaire à [AB] passant par le milieu I de [AB] . $M\binom{x}{y}$ est un point de \mathcal{P} . Alors :

 $M \in \Delta \Leftrightarrow \overrightarrow{IM} \perp \overrightarrow{AB} \Leftrightarrow \overrightarrow{IM} \cdot \overrightarrow{AB} = 0 \Leftrightarrow x_{\overrightarrow{IM}} \ x_{\overrightarrow{AB}} + y_{\overrightarrow{IM}} \ y_{\overrightarrow{AB}} = 0$

5) équations cartésiennes de cercles



un cercle de centre Ω connu et de rayon \mathbf{r} connu	$M\binom{x}{y}$ désigne un point de \mathcal{P} . Alors : page 2 / 2 $M \in \mathbf{C} \Leftrightarrow \Omega M = r \Leftrightarrow \Omega M^2 = r^2 \ (\Omega M \text{ et r positifs})$ $M \in \mathbf{C} \Leftrightarrow (x - x_{\Omega})^2 + (y - y_{\Omega})^2 = r^2$
un cercle de centre Ω connu contenant un point A connu	Avec A point de \boldsymbol{C} le rayon r de \boldsymbol{C} est égal à la longueur ΩA . $M\binom{x}{y}$ désigne un point de \mathcal{P} . Alors : $M \in \boldsymbol{C} \Leftrightarrow \Omega M = \Omega A$ $M \in \boldsymbol{C} \Leftrightarrow \Omega M^2 = \Omega A^2 \ (\Omega M \text{ et } \Omega A \text{ réels positifs })$ $M \in C \Leftrightarrow (x - x_{\Omega})^2 + (y - y_{\Omega})^2 = (x_A - x_{\Omega})^2 + (y_A - y_{\Omega})^2$
un cercle de $\mathbf{diamètre} \lfloor AB \rfloor$ connu	Le cercle C de diamètre $[AB]$ est l'ensemble des points M tels que : $\overrightarrow{AM} \perp \overrightarrow{BM}$. $M\binom{x}{y}$ est un point de \mathcal{P} . Alors : $M \in C \Leftrightarrow \overrightarrow{AM} \perp \overrightarrow{BM} \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{BM} = 0$ $M \in C \Leftrightarrow (x - x_A)(x - x_B) + (y - y_A)(y - y_B) = 0$

remarque : Après avoir développé les calculs on trouve pour le cercle une équation de la forme $x^2 + y^2 + ax + by + c = 0$

6) méthode pour reconnaître un ensemble d'équation : $x^2 + y^2 + ax + by + c = 0$

un exemple traité : Selon les valeurs de k reconnaître l'ensemble $\mathbf{E}_k = \left\{ M \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}, x^2 + y^2 - 4x - 2y + k = 0 \right\}$ $\mathbf{M} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$ désigne un point de \mathcal{P} . Alors : $M \in \mathbf{E}_k \Leftrightarrow x^2 + y^2 - 4x - 2y + k = 0 \Leftrightarrow (x^2 - 4x) + (y^2 - 2y) + k = 0$

En utilisant deux fois la technique de la forme canonique d'un polynôme du second degré on construit ensuite :

$$M \in \mathbf{E}_k \Leftrightarrow (x-2)^2 - (2)^2 + (y-1)^2 - (1)^2 + k = 0 \Leftrightarrow (x-2)^2 + (y-1)^2 = 5 - k$$

D'autre part : \rightarrow le premier membre de l'égalité précédente est positif car : $\forall x \in \mathbb{R}$, $(x-2)^2 \ge 0$, $\forall y \in \mathbb{R}$, $(y-1)^2 \ge 0$ \rightarrow le signe du second membre 5-k de cette égalité dépend de la valeur attribuée à k .

D'où la discussion selon les valeurs de k

 $1^{er}cas: k > 5$. Alors: 5 - k < 0 et $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, $(x - 2)^2 + (y - 1)^2 \neq 5 - k$.

Par conséquent : $\forall M \in \mathcal{P}$, $M \notin \mathbf{E}_k$ et $\mathbf{E}_k = \emptyset$

 $\underline{2^{\grave{e}me}cas: k=5} \text{ . Alors: } 5-k=0 \text{ et } M \in \boldsymbol{E}_k \Leftrightarrow (x-2)^2+(y-1)^2=0 \text{ et } \forall x \in \mathbb{R} \text{ , } (x-2)^2 \geq 0 \text{ , } \forall y \in \mathbb{R} \text{ , } (y-1)^2 \geq 0$

Par théorème ; avec a et b positifs : $a+b=0 \Leftrightarrow a=0$ et b=0 . Donc :

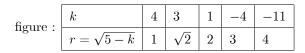
 $M \in \mathbf{E}_k \Leftrightarrow (x-2)^2 = 0$ et $(y-1)^2 = 0$ conduisant à : $M \in \mathbf{E}_k \Leftrightarrow x = 2$ et y = 1

L'ensemble \pmb{E}_k est donc réduit à un seul point : $\Omega \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. $\pmb{E}_k = \left\{\Omega \begin{pmatrix} 2 \\ 1 \end{pmatrix}\right\}$

 $3^{\grave{e}me}cas: k < 5$. Alors: 5 - k > 0 et on peut écrire: $5 - k = r^2$ en posant: $r = \sqrt{5 - k}$. Alors:

 $M \in \mathbf{E}_k \Leftrightarrow (x-2)^2 + (y-1)^2 = 5 - k \text{ et } M \in \mathbf{E}_k \Leftrightarrow (x-x_\Omega)^2 + (y-y_\Omega)^2 = r^2 \text{ avec} : x_\Omega = 2, y_\Omega = 1 \text{ et } r = \sqrt{5-k}$

Cette dernière équivalence permet d'affirmer : \mathbf{E}_k est le cercle de centre $\Omega \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ et de rayon $\sqrt{5-k}$



à retenir :

Selon les valeurs données pour a , b et c, un ensemble ayant une équation du type : $x^2 + y^2 + ax + by + c = 0 \text{ est :}$ \rightarrow soit l'ensemble vide $\rightarrow \text{ soit réduit à un seul point } \Omega \text{ avec } \Omega \begin{pmatrix} -\frac{a}{2} \\ -\frac{b}{2} \end{pmatrix}$ \rightarrow soit un cercle centré en Ω

