Trigo - énoncés feuille d'exercices 2

situation le plan orienté est muni d'un repère orthonormal direct $(O, \overrightarrow{i}, \overrightarrow{j})$ et \mathcal{C} est le cercle trigonométrique de centre Oattendu les valeurs des lignes trigonométriques des réels distincts de $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi, 2\pi$ doivent être justifiées

On donne la valeur exacte de $\cos \frac{\pi}{12}$ par : $\cos \frac{\pi}{12} = \frac{\sqrt{2+\sqrt{6}}}{4}$

1) Développer $(\sqrt{2} - \sqrt{6})^2$ puis en déduire la valeur exacte de sin $\frac{\pi}{12}$

2) En déduire la valeur exacte de tan $\frac{\pi}{12}$, $\sin -\frac{\pi}{12}$, $\cos \frac{5\pi}{12}$, $\sin \frac{5\pi}{12}$, $\sin \frac{13\pi}{12}$, $\cos \frac{11\pi}{12}$, $\sin \frac{41\pi}{12}$

exercice 2 les outils : \rightarrow le signe de $\cos \alpha$ et le signe de $\sin \alpha$

 $\rightarrow \forall \alpha \in \mathbb{R} \text{ , } \cos^2\alpha + \sin^2\alpha = 1 \text{ et donc} : \forall \alpha \in \mathbb{R} \text{ , } \cos^2\alpha = 1 - \sin^2\alpha \text{ ;} \forall \alpha \in \mathbb{R} \text{ , } \sin^2\alpha = 1 - \cos^2\alpha \text{ } \cos^2\alpha = 1 - \cos^$

1) a est un réel vérifiant $\cos a = -\frac{3}{5}$ et $a \in \left[\pi, \frac{3\pi}{2}\right[$. Calculer $\sin a$ puis en déduire la valeur de $\tan a$

2) b est un réel vérifiant $\sin b = \frac{3}{4}$. Calculer $\cos b$ dans chacun des cas suivants : 1) $b \in \left[\frac{\pi}{2}, \pi\right]$; 2) $b \in \left[0, \frac{\pi}{2}\right]$

exercice 3 α est défini par : $\alpha \in \left[\frac{3\pi}{2}, 2\pi\right]$ et $\cos^2 \alpha = \frac{48}{49}$. 1) Que vaut $\cos \alpha$?

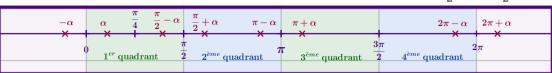
2) En déduire la valeur de chacun des réels suivants : $\sin \alpha$; $\tan \alpha$; $\sin(25\pi + \alpha)$; $\cos(\frac{9\pi}{2} + \alpha)$; $\sin(-7\pi - \alpha)$; $\cos(\alpha - \frac{\pi}{2})$

3) Résoudre graphiquement : $x \in [0, 2\pi]$, $\sin \alpha \le \sin x \le \frac{\sqrt{2}}{2}$

exercice 4 Le plan est muni d'un repère $(O, \overrightarrow{i}, \overrightarrow{j})$ orthonormal direct et \mathcal{C} : cercle trigonométrique de centre ODans chacun des cas suivants on demande de faire une figure en représentant sur le cercle $\mathcal C$ l'ensemble des points M images des réels x solutions de l'inéquation proposée puis de résoudre graphiquement cette inéquation .

les outils : $\rightarrow \forall k \in \mathbb{Z}$, $\cos(\alpha + 2k\pi) = \cos\alpha$ et $\sin(\alpha + 2k\pi) = \sin\alpha$; $\rightarrow 1$ tour en $\frac{\pi}{2}$: $\times \frac{\pi}{2} = 2\pi$ exercice 5

 \rightarrow les lignes des mesures associées à la mesure α (angles associés)



 $\rightarrow \forall \alpha \in \mathbb{R} , \cos^2 \alpha + \sin^2 \alpha = 1 \text{ et donc} : \forall \alpha \in \mathbb{R} , \cos^2 \alpha = 1 - \sin^2 \alpha ; \forall \alpha \in \mathbb{R} , \sin^2 \alpha = 1 - \cos^2 \alpha$

Simplifier au mieux les égalités suivantes :

-	
$A(x) = \cos(x + 19\pi) + 2\cos\left(\frac{19\pi}{2} - x\right) + \sin(-\pi - x) + \sin\left(\frac{\pi}{2} - x\right)$	$A(x) = -\sin x$
$B(x) = -\cos\left(-x + \frac{35\pi}{2}\right) + 2\sin\left(-\frac{17\pi}{2} - x\right) + 3\cos(21\pi - x) + 4\sin\left(-\frac{7\pi}{2} - x\right)$	$B(x) = \sin x - \cos x$
$C(x) = \cos^2\left(\frac{33\pi}{2} + x\right) + \cos^2\left(-\frac{\pi}{2} - x\right) + \sin^2(x - 39\pi) + \sin^2\left(\frac{23\pi}{2} + x\right) + \cos^2\left(\frac{13\pi}{2} - x\right)$	$C(x) = 1 + 3\sin^2 x$
$D = \cos^2 \frac{\pi}{2} + \cos^2 \frac{3\pi}{2} + \cos^2 \frac{8\pi}{2} + \cos^2 \frac{10\pi}{2} + \cos^2 \frac{26\pi}{2} + \cos^2 \frac{29\pi}{2} + \cos^2 \frac{11\pi}{2}$	D=3

$$D = \cos^2 \frac{\pi}{22} + \cos^2 \frac{3\pi}{22} + \cos^2 \frac{8\pi}{22} + \cos^2 \frac{10\pi}{22} + \cos^2 \frac{20\pi}{22} + \cos^2 \frac{29\pi}{22} + \cos^2 \frac{11\pi}{22}$$

$$E = \sin^2 \frac{\pi}{14} + \sin^2 \left(-\frac{15\pi}{14}\right) + \sin^2 \left(\frac{8\pi}{14}\right) + \sin^2 \left(-\frac{22\pi}{14}\right) + \sin^2 \left(\frac{20\pi}{14}\right) + \sin^2 \left(\frac{7\pi}{42}\right) + \sin^2 \left(-\frac{27}{14}\pi\right)$$

$$E = \frac{13}{4}$$

$$\pi$$
 $E = \frac{13}{4}$

réponse

exercice 6 1) Simplifier au mieux ce qui suit
$$a = \cos^2\left(\frac{4\pi}{24}\right) - \sin^2\left(\frac{17\pi}{24}\right) + \cos^2\left(\frac{21\pi}{24}\right) - \sin^2\left(\frac{29\pi}{24}\right) + \sin^2\left(\frac{35\pi}{24}\right) + \cos^2\left(\frac{39\pi}{24}\right) + \sin^2\left(\frac{49\pi}{24}\right)$$

2) Utiliser les formules de duplication pour justifier chacune des deux égalités suiv

$$\rightarrow 16 \times \sin\left(\frac{\pi}{24}\right) \times \sin\left(\frac{5\pi}{24}\right) \times \sin\left(\frac{7\pi}{24}\right) \times \sin\left(\frac{11\pi}{24}\right) = 1 \quad \rightarrow \cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right) + \cos^4\left(\frac{5\pi}{8}\right) + \cos^4\left(\frac{7\pi}{8}\right) = \frac{3\pi}{2}$$

exercice 7 Résoudre les équations suivantes qui sont de la forme $x \in \mathbb{R}$, $P(\cos x) = 0$ ou $P(\sin x) = 0$

 $(E_1): x \in \mathbb{R}, 2\cos^2 x - \sqrt{3}\cos x = 0; (E_2): x \in \mathbb{R}, 2\sin^2 x + \sin x = 0; (E_3): x \in \mathbb{R}, 2\cos^2 x + 5\cos x - 3 = 0$

 $(E_4): x \in \mathbb{R}, 4\sin^2 x + 2(1+\sqrt{2})\sin x + \sqrt{2} = 0$ (en préalable à la résolution de $(E_4):$ développer $(1-\sqrt{2})^2$)

$$(E_1): x \in \mathbb{R}, -2\cos(x + \frac{\pi}{3}) = \sqrt{2}$$

$$(E_2): x \in \mathbb{R}, \cos(x + \frac{\pi}{6}) = \cos(2x + \frac{\pi}{5})$$

$$(E_3): x \in \mathbb{R}, \sin(x + \frac{\pi}{2}) = \sin(3x + \frac{\pi}{4})$$

$$(E_4): x \in \mathbb{R}, \sin(2x + \frac{\pi}{5}) = \cos(x + \frac{3\pi}{5})$$

$$(E_5): x \in \mathbb{R}, \sin(x + \frac{3\pi}{\frac{4}{\pi}}) + \cos(x + \frac{\pi}{\frac{2}{\pi}}) = 0$$

$$(E_6): x \in \mathbb{R}, \cos(x + \frac{\pi}{3}) = -\cos(x + \frac{\pi}{6})$$

$$(E_7): x \in \mathbb{R}, \sin(2x + \frac{\pi}{5}) = -\sin(x + \frac{3\pi}{5})$$

les solutions à trouver

pour
$$(E_1): x \equiv \frac{5\pi}{12} [2\pi]$$
 ou $x \equiv -\frac{13}{12} [2\pi]$

pour
$$(E_2)$$
: $x \equiv -\frac{\pi}{30} [2\pi]$ ou $x \equiv -\frac{11\pi}{90} \left[\frac{2\pi}{3}\right]$

pour
$$(E_3): x \equiv \frac{\pi}{8} [\pi]$$
 ou $x \equiv \frac{\pi}{16} \left[\frac{\pi}{2}\right]$

pour
$$(E_4): x \equiv -\frac{\pi}{10} \left[\frac{2\pi}{3} \right]$$
 ou $x \equiv \frac{9\pi}{10} [2\pi]$

pour
$$(E_5): x \equiv -\frac{7\pi}{8} [\pi]$$

pour
$$(E_6): x \equiv \frac{\pi}{4} [\pi]$$

pour
$$(E_6)$$
: $x \equiv \frac{\pi}{4} \begin{bmatrix} \pi \end{bmatrix}$
pour (E_7) : $x \equiv -\frac{4\pi}{15} \begin{bmatrix} 2\pi \\ 3 \end{bmatrix}$ ou $x \equiv \frac{7\pi}{5} [2\pi]$

exercice 9 | Montrer, avec les formules d'addition, que chacune des égalités suivantes est vraie pour tous réels x et y

1)
$$\cos(x + \frac{\pi}{4}) = \frac{\sqrt{2}}{2}(\cos x - \sin x)$$

2)
$$\sin(x + \frac{\pi}{4}) = \frac{\sqrt{2}}{2}(\cos x + \sin x)$$

3)
$$\cos(x - \frac{4\pi}{2}) = \sin x$$

4)
$$\cos^4 x - \sin^4 x = \cos 2x$$

5)
$$\cos^4 x + \sin^4 x = \frac{3 + \cos 4x}{4}$$

6)
$$\cos x + \cos(x + \frac{2\pi}{3}) + \cos(x + \frac{4\pi}{3}) = 0$$

7)
$$\sin x + \sin(x + \frac{2\pi}{3}) + \sin(x + \frac{4\pi}{3}) = 0$$

6)
$$\cos x + \cos(x + \frac{2\pi}{3}) + \cos(x + \frac{4\pi}{3}) = 0$$

7) $\sin x + \sin(x + \frac{2\pi}{3}) + \sin(x + \frac{4\pi}{3}) = 0$
8) $\cos^2 x + \cos^2(x + \frac{\pi}{3}) + \cos^2(x + \frac{2\pi}{3}) = \frac{3}{2}$

9)
$$\sin^2 x + \sin^2(x + \frac{\pi}{3}) + \sin^2(x + \frac{2\pi}{3}) = \frac{3}{2}$$

10) $\cos^2 x \sin^2 x = \frac{1 - \cos 4x}{8}$

10)
$$\cos^2 x \sin^2 x = \frac{1 - \cos 4x}{8}$$

11)
$$(\cos x + \sin x) \left(1 - \frac{1}{2}\sin 2x\right) = \cos^3 x + \sin^3 x$$

12)
$$\cos 3x = 4\cos^3 x - 3\cos x$$

13)
$$\sin 3x = 3\sin x - 4\sin^3 x$$

14)
$$\sin 4x = 4\cos^3 x \sin x - 4\cos x \sin^3 x$$

15)
$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y$$

16)
$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y$$

17)
$$\sin(x+y)\cos(x-y) + \sin(x-y)\cos(x+y) = \sin 2x$$

exercice 10

1) Justifier pour tous réels x et y:

1-1
$$\cos x \cos y = \frac{1}{2} \left[\cos(x+y) + \cos(x-y) \right]$$

1-2
$$\sin x \sin y = -\frac{1}{2} \left[\cos(x+y) - \cos(x-y) \right]$$

1-3
$$\sin x \cos y = \frac{1}{2} \left[\sin(x+y) + \sin(x-y) \right]$$

2) En déduire pour tous réels a et b

2-1
$$\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

1) Sustmer point to us feels
$$x$$
 et y .
1-1 $\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$ 2-1 $\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$
1-2 $\sin x \sin y = -\frac{1}{2} [\cos(x+y) - \cos(x-y)]$ 2-2 $\cos a - \cos b = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$

2-3
$$\sin a + \sin b = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

exercice 11 En utilisant les formules de trigo à connaître exprimer chacun des nombres suivants

soit comme un sinus, soit comme un cosinus, soit comme le carré d'un sinus, soit comme le carré d'un cosinus.

$$a = -\cos\frac{7\pi}{15} \qquad c = 2\sin\frac{5\pi}{24}\cos\frac{5\pi}{24} \qquad e = \sin^2\frac{3\pi}{10} - \cos^2\frac{3\pi}{10} \qquad g = \frac{1}{2}\left(1 + \cos\frac{10\pi}{21}\right)$$

$$b = 2\cos^2\frac{17\pi}{24} - 1 \qquad d = 1 - \sin^2\frac{2\pi}{9} \qquad f = \frac{\sqrt{2}}{2}\cos\frac{2\pi}{5} + \frac{\sqrt{2}}{2}\sin\frac{2\pi}{5} \qquad h = \frac{\sqrt{3}}{2}\sin\frac{7\pi}{8} - \frac{1}{2}\cos\frac{7\pi}{8}$$

exercice 12 1) Calculer $\cos 2x$ lorsque : 1-1 on donne : $\cos x = -\frac{1}{4}$; 1-2 on donne : $\sin x = \frac{3}{5}$

2) Calculer $\sin 2x$ dans chacun des deux cas suivants : $\begin{cases} \mathbf{2-1} \text{ on donne} : \cos x = \frac{1}{\sqrt{3}} \text{ et } \pi < x < 2\pi \\ \mathbf{2-2} \text{ on donne} : \sin x = \frac{3}{5}et - \frac{\pi}{2} < x < \frac{\pi}{2} \end{cases}$

3) Justifier: $\forall x \in \mathbb{R}$, $\cos 4x = 8\sin^4 x - 8\sin^2 x + 1$

exercice 13 1) Reconnaître chacun des réels A et B comme un cosinus puis chacun des réels C et D comme un sinus: $A = \frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x$; $B = \sqrt{2}\cos x + \sqrt{2}\sin x$; $C = \frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x$; $D = -\frac{\sqrt{3}}{2}\sin x - \frac{1}{2}\cos x$

2) On donne $\cos \alpha$ et $\sin \alpha$; on demande de reconnaître α

2-1
$$\cos \alpha = \frac{\sqrt{6} - \sqrt{2}}{4}$$
 et $\sin \alpha = \frac{\sqrt{6} + \sqrt{2}}{4}$ **2-2** $\cos \alpha = \frac{-\sqrt{6} - \sqrt{2}}{4}$ et $\sin \alpha = \frac{\sqrt{6} - \sqrt{2}}{4}$

3) Justifier: $\forall x \in \mathbb{R}$, $\sin x - \cos x = \sqrt{2}\sin(x - \frac{\pi}{4})$ puis résoudre: $x \in \mathbb{R}$, $\sin x - \cos x = \frac{1}{\sqrt{2}}$

4) Résoudre : $x \in \mathbb{R}$, $\cos x - \sqrt{3} \sin x = -1$

- 1) Calculer la valeur numérique de $\cos 2x$ et $\sin 2x$
- 2) Vérifier : $\cos 4x = \sin x$ puis en déduire la valeur de x

1) En utilisant les lignes trigonométriques de $\frac{\pi}{3}$ et $\frac{\pi}{4}$ calculer cos $\frac{7\pi}{12}$ et sin $\frac{7\pi}{12}$ exercice 15

2) En déduire la résolution de (E_5) : $x \in \mathbb{R}$, $\sqrt{2}(\sin x - \cos x) - \sqrt{6}(\sin x + \cos x) = -2\sqrt{2}$

1) Démontrer que pour tout réel x: $\cos^2 x = \frac{1 + \cos 2x}{2}$ et $\sin^2 x = \frac{1 - \cos 2x}{2}$ exercice 16

- 2) En déduire les valeurs de $\cos^2\frac{\pi}{8}$ et de $\sin^2\frac{\pi}{8}$ puis donner les valeurs exactes de $\cos\frac{\pi}{8}$ et de $\sin\frac{\pi}{8}$
- 3) En déduire la résolution de (E): $x \in \mathbb{R}$, $\sqrt{3}\cos^2 x \sqrt{3}\sin^2 x + 2\sin x\cos x = \sqrt{2}$

exercice 17 α étant un réel quel
conque , on lui associe l'équation (E_α) :
 $x\in\mathbb{R}$, $x^2+2(\cos\alpha)x+\cos2\alpha=0$

- 1) Pour quelles valeurs de α l'équation (E_{α}) admet-elle le réel 0 comme solution ?
- 2) Pour quelles valeurs de α l'équation (E_{α}) admet-elle le réel 1 comme solution ?
- 3) Justifier que l'équation (E_{α}) admet pour toute valeur de α deux solutions (éventuellement égales)

exercice 18 Les cinq questions suivantes sont indépendantes et font intervenir quatre égalités ou quatre énoncés qui sont vrais ou faux . Pour chaque question il y a exactement deux égalités vraies ou deux énoncés vrais .

Vous devez donc cocher au plus deux réponses (les deux égalités que vous jugez correctes ou bien les deux énoncés que vous jugez corrects).

 α est un réel pour lequel les membres des 4 égalités proposées sont définis. Alors :

- $\cos(\frac{21\pi}{2} + \alpha) \sin(5\pi + \alpha) = 0$
- $\sin(\alpha \frac{\pi}{2}) + \cos(\alpha \pi) = 2\cos\alpha$
- $1 + \tan^2 \alpha = \frac{-1}{\cos^2 \alpha}$
- $1 \cos 4\alpha = 8\sin^2 \alpha \cos^2 \alpha$

question Q2 x est un réel compris strictement entre π et $\frac{3\pi}{2}$ vérifiant : $\cos^2 x = \frac{9}{25}$. Alors :

- x vérifie $\cos x = -\frac{3}{5}$ et $\sin x = \frac{4}{5}$
- x vérifie $\sin 2x = \frac{24}{25}$ et $\cos 2x = -\frac{7}{25}$
- x vérifie $\sin\left(x \frac{\pi}{4}\right) = -\frac{\sqrt{2}}{10}$
- x vérifie $\cos\left(x + \frac{\pi}{2}\right) = \frac{3 4\sqrt{3}}{10}$

question Q3 On note S l'ensemble solution de

l'équation (E): $x \in \mathbb{R}$, $8\sin^3 x + 3\sqrt{3} = 0$. Alors:

- $-\frac{\pi}{3}$ et $\frac{4\pi}{3}$ sont des solutions de (E)
- $x \in S$ entraı̂ne $\pi x \in S$
- $x \in S$ entraı̂ne $-x \in S$

question $\mathbf{Q4}$ x étant un réel, on donne 4 expressions de la forme $a\cos x + b\sin x$ (a et b réels) . Alors :

- $-\cos x + \sin x$ est égal à $\sqrt{2}\sin\left(\frac{5\pi}{4} x\right)$
- $-\cos x \sqrt{3}\sin x$ est égal à $2\sin\left(x \frac{11\pi}{6}\right)$
- $\sqrt{3}\cos x + \sin x$ est égal à $2\cos\left(\frac{11\pi}{6} + x\right)$
- $-\cos x \sin x$ est égal à $\sqrt{2}\cos\left(x + \frac{5\pi}{4}\right)$

On examine les éventuelles solutions de 4 équations trigonométriques .

- l'équation $x \in \mathbb{R}$, $\sin x \cos x = -2$ n'admet pas de solution
- l'équation $x \in \mathbb{R}$, $\sin^2 x + 2\cos^2 x + 1 = 0$ n'admet pas de solution
- l'équation $x \in \mathbb{R}$, $3\cos^2 x 5\cos x 12 = 0$ admet au moins une solution
- l'équation $x \in \mathbb{R}$, $\cos^2 x \sin^2 x = -2$ admet au moins une solution